On the Length of a Partial Independent Transversal in a Matroidal Latin Square

نویسندگان

  • Daniel Kotlar
  • Ran Ziv
چکیده

We suggest and explore a matroidal version of the Brualdi Ryser conjecture about Latin squares. We prove that any n × n matrix, whose rows and Columns are bases of a matroid, has an independent partial transversal of length d2n/3e. We show that for any n, there exists such a matrix with a maximal independent partial transversal of length at most n− 1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A lower bound for the length of a partial transversal in a Latin square

It is proved that every n×n Latin square has a partial transversal of length at least n−O(log n). The previous papers proving these results [including one by the second author] not only contained an error, but were sloppily written and quite difficult to understand. We have corrected the error and improved the clarity.

متن کامل

Rainbow perfect matchings in r-partite graph structures

A latin transversal in a square matrix of order n is a set of entries, no two in the same row or column, which are pairwise distinct. A longstanding conjecture of Ryser states that every Latin square with odd order has a latin transversal. Some results on the existence of a large partial latin transversal can be found in [11,6,16]. Mainly motivated by Ryser’s conjecture, Erdős and Spencer [8] p...

متن کامل

A Matroid Generalization of a Result on Row-Latin Rectangles

Let A be an m n matrix in which the entries of each row are all distinct. Drisko 4] showed that, if m 2n ? 1, then A has a transversal: a set of n distinct entries with no two in the same row or column. We generalize this to matrices with entries in a matroid. For such a matrix A, we show that if each row of A forms an independent set, then we can require the transversal to be independent as we...

متن کامل

Transversals in Latin Squares: A Survey

A latin square of order n is an n×n array of n symbols in which each symbol occurs exactly once in each row and column. A transversal of such a square is a set of n entries containing no pair of entries that share the same row, column or symbol. Transversals are closely related to the notions of complete mappings and orthomorphisms in (quasi)groups, and are fundamental to the concept of mutuall...

متن کامل

Transversals in Latin Squares

A latin square of order n is an n×n array of n symbols in which each symbol occurs exactly once in each row and column. A transversal of such a square is a set of n entries such that no two entries share the same row, column or symbol. Transversals are closely related to the notions of complete mappings and orthomorphisms in (quasi)groups, and are fundamental to the concept of mutually orthogon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2012